
Reconciliation of classical and reacted-site probability 
approaches to allowance for ligand multivalence in binding 
studies

Pete Lollara and Donald J. Winzorb,*

a Division of Hematology-Oncology, Department of Pediatrics, Emory University, Atlanta, Georgia 
30322

b School of Chemistry and Biological Sciences, University of Queensland, Brisbane, Queensland 
4072, Australia

Abstract

The objective of this investigation is to engender greater confidence in the validity of binding 

equations derived for multivalent ligands on the basis of reacted-site probability theory. To that 

end a demonstration of the theoretical interconnection between expressions derived by the 

classical stepwise equilibria and reacted-site probability approaches for univalent ligands is 

followed by use of the traditional stepwise procedure to derive binding equations for bivalent and 

trivalent ligands. As well as demonstrating the unwieldy nature of the classical binding equation 

for multivalent ligand systems, that exercise has allowed numerical simulation to be used to 

illustrate the equivalence of binding curves generated by the two approaches. The advantages of 

employing a redefined binding function for multivalent ligands is also confirmed by subjecting the 

simulated results to a published analytical procedure that has long been overlooked.
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INTRODUCTION

The analysis of the binding of a univalent ligand to equivalent and independent sites on a 

multivalent acceptor was developed originally (Klotz, 1946) by consideration of the 

stepwise equilibria that constitute the overall process. Several other methods have been used 

to reduce the polynomial equation resulting from the stepwise approach to the familiar 

hyperbolic binding isotherm (e.g., Tanford, 1961; Cantor & Schimmel, 1980; Klotz, 1986). 

However, ligand multivalence has long been recognized as a phenomenon of particular 

relevance to the quantitative description of antigen–antibody interactions where neither 

reactant is univalent (Goldberg, 1952, 1953; Singer, 1965). Nevertheless, most quantitative 
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immunochemical studies have employed the classical binding equation for univalent ligands 

derived from the stepwise, stoichiometric equilibria involved in the assembly of the multi-

ligated acceptor (Klotz, 1946; Scatchard, 1949), a practice that has continued despite 

specific demonstrations of its invalidity (Calvert et al., 1979) as well as means of making 

adequate allowance for the consequences of ligand multivalence (Calvert et al., 1979; Hogg 

and Winzor, 1984, 1985; Harris et al., 1995). Such reluctance to take advantage of valid 

procedures for characterizing the binding of multivalent ligands presumably reflects distrust 

of these developments because of their reliance upon reacted-site probability theory (Flory, 

1941, 1953; Stockmayer, 1943) rather than the classical stepwise binding approach.

The aim of the present communication is to bolster confidence in the equations derived from 

reacted-site considerations by using the traditional approach to derive an expression which 

predicts the same binding curves as those based on reacted-site probability theory for the 

simplest multivalentmultivalent system – that in which acceptor and ligand are both 

bivalent. Thereby demonstrated is the impracticality of adopting the traditional stepwise 

approach as a general procedure for treating multivalence because of its generation of 

binding equations involving the ratio of two indefinite multinomial series in free ligand 

concentration. That undesirable situation can be avoided completely by resorting to reacted-

site probability theory, which provides binding equations with closed solutions for all 

combinations of acceptor and ligand valences.

THEORETICAL CONSIDERATIONS

The derivation of binding equations by either the traditional (Klotz, 1946) or reacted-site 

probability (Calvert et al., 1979) approach is based on equivalence and independence of 

acceptor sites in their interaction with ligand – a combined set of circumstances that allows 

description of all interactions in terms of a single equilibrium constant, variously called the 

intrinsic equilibrium constant (Klotz, 1986), site-binding constant (Calvert et al., 1979), or 

microscopic equilibrium constant (Cantor & Schimmel, 1980). For systems involving the 

interaction of a univalent ligand (B) with a p-valent acceptor (A) the binding equation has 

traditionally been derived (Klotz, 1946) from the concentrations of all species generated by 

the stepwise addition of ligand molecules to form the complex with maximum 

stoichiometry, ABp. However, multivalence of the ligand introduces virtually 

insurmountable complexity into this stepwise approach because of the need to establish the 

concentrations of an infinite number of species AiBj – the reason for the switch to reacted-

site probability theory (Flory, 1941; Stockmayer, 1943; Calvert et al., 1979) and thereby 

avoidance of that unenviable task. This theoretical section begins with presentation of the 

reacted-site probability approach to derivation of the binding equation for the interaction 

between a univalent ligand and a p-valent acceptor to demonstrate that it yields the 

expression obtained by the classical stepwise procedure (Klotz, 1946). Such action serves to 

introduce in current terminology the approach used by Goldberg (1952) in the original 

application of reacted-site probability theory to antigen–antibody interactions.
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Binding equation for a univalent ligand: the reacted-site probability 

approach

The central parameters in reacted-site probability theory are PA, the probability that any 

given site on an acceptor molecule (A) has reacted with a site on ligand (B); and PB, the 

corresponding probability that a ligand site has reacted with an acceptor site. For a univalent 

ligand the single site is either occupied by acceptor or free, whereupon the free and total 

ligand concentrations (CB and C̄B respectively) are related by the expression C̄B = CB + 

PBC̄B; or, on rearrangement,

(1)

The corresponding relationship between total (C̄A) and free (CA) concentrations of a p-valent 

acceptor is obtained by noting that C̄A is the sum of concentrations of free A and the 

complexes AB, AB2, ..., ABp. On the grounds that the probability of i acceptor sites being 

occupied is given by the binomial density function φi, the concentration of acceptor–ligand 

complex ABi is given by the product φiC̄A, where

(2)

The relationship between free and total acceptor concentrations then assumes the form

which has the closed solution (Singer, 1965)

(3)

In situations where all interactions involve identical and independent sites on the acceptor, 

the intrinsic equilibrium constant k, is defined as the ratio of the concentration of bound 

(reacted) ligand sites to the product of the concentrations of unreacted acceptor sites and 

unreacted ligand sites (Klotz, 1946). For a univalent ligand, reacted ligand sites equal bound 

ligand molecules. In terms of reacted-site probability, the concentration of bound ligand can 

be expressed as either the concentration of reacted ligand sites, PBC̄B, or the concentration 

of reacted acceptor sites (pPAC̄A). The concentrations of unreacted acceptor sites and 

unreacted ligand sites are p(1 – PA)C̄A and (1 – PB)C̄B, respectively. Thus,

(4)

Defined in this way, k is an association constant with units of M–1. The term in (1 – PA) is 

eliminated by noting the necessity for the concentration of reacted A sites (pPAC̄A) to equal 

that of reacted B sites (PBC̄B), a requirement that leads to the expression
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(5)

Substitution of eqn (5) into eqn (4) then gives

(6)

or, on noting from eqn (1) that (1 – PB) = CB/C̄B,

(7)

Incorporation of the definition of the experimental binding function, r, as the concentration 

of bound ligand divided by the total acceptor concentration (r = PBC̄B/C̄A) then leads to the 

rectangular hyperbolic relationship

(8)

that was derived by Klotz (1946) in the classical stepwise treatment of ligand binding to 

equivalent and independent acceptor sites.

The stepwise equilibria define p constants, variously called macroscopic, stoichiometric or 

stepwise equilibrium constants. The relationship between the stoichiometric equilibrium 

constant for the ith step (Ki) and the intrinsic equilibrium constant, k,

(9)

was derived by Klotz (1946) algebraically without using statistical or probability factors. 

This expression can also be derived by a statistical approach to the number of ways a total of 

i ligands can bind to a p-valent acceptor (e.g., Tanford, 1961; Cantor & Schimmel, 1980).

For interactions involving a univalent ligand there is no particular advantage in switching to 

the reacted-site probability approach. However, it provides a much simpler means of 

deriving a binding equation for systems in which the ligand also exhibits multivalence.

Binding equation for a bivalent ligand: the reacted-site probability 

approach

Interactions between a p-valent acceptor A and a bivalent ligand B lead to networks of 

alternating A and B molecules with stoichiometric composition AiBj. The counterpart of eqn 

(1) for ligand now becomes

(10)
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where the exponent accommodates the bivalence of ligand. The binding function may thus 

be written as

(11)

where r is the number of moles (not sites) of B bound per mole of acceptor. The definition of 

the intrinsic equilibrium constant, k, as the concentration of reacted ligand sites to the 

product of the concentrations of unreacted acceptor sites and free bivalent ligand sites is 

retained, which again produces eqn (4). The stoichiometry factor for bivalent ligand does not 

appear in eqn (4) because it cancels in the numerator and denominator. Again we take 

advantage of the necessity for equal concentrations of reacted acceptor and ligand sites, i.e.,

(12)

to eliminate (1 – PA) from eqn (4) – an exercise from which it follows that

(13)

The free ligand concentration is now introduced into eqn (13) by means of eqn (10) to give a 

quadratic with solution (Calvert et al., 1979)

(14a)

(14b)

where α = 2kCB. As established by Calvert et al. (1979), the substitution of this expression 

for PB into eqn (11) eventually leads to the following binding equation,

(15a)

(15b)

The first term on the right-hand side of eqn (15a) describes a rectangular hyperbolic 

dependence of binding function upon CB with p and 2k the characteristic parameters. 

However, the overall dependence deviates from the form of a rectangular hyperbola because 

of the contribution from the second term (Ω), which only assumes a value of zero when α = 

1 [i.e., CB = 1/(2k)] for all C̄A. Binding curves obtained at a series of fixed acceptor 

concentrations are thus predicted to intersect at the point corresponding to CB = 1/(2k), r = 

p/2. This behavior has been illustrated (Calvert et al., 1979) by the numerical simulation of 

such binding curves. As noted by Calvert et al. (1979) deviations from rectangular 
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hyperbolic behavior that are consistent with eqn (15a) usually tend to be regarded as 

signifying either heterogeneity or negative cooperativity of acceptor sites, when in fact they 

may simply reflect ligand bivalence and a single intrinsic equilibrium constant.

Although over thirty years have elapsed since the publication of eqns (15a) and (15b), their 

use seems to have been limited to that illustrative application in the original investigation 

(Calvert et al., 1979) and a review article shortly thereafter (Nichol and Winzor, 1981). Such 

disregard of the only valid quantitative description of the traditional binding curve for the 

interaction between a bivalent ligand and a multivalent acceptor must reflect to some extent 

a reluctance to accept a finding based on reacted-site probability theory, an unfamiliar 

concept to immunochemists. To engender greater confidence in the validity of the analysis, a 

comparable quantitative description is derived by considering the stepwise equilibria 

involved – an approach with which experimenters are more familiar. However, a 

prerequisite for such an endeavour is the availability of expressions for the equilibrium 

concentrations of all complexes present in a mixture of multivalent acceptor and bivalent 

ligand.

Quantitative description of the solution composition

The interaction between a p-valent acceptor and a bivalent ligand results in the equilibrium 

coexistence of unbound reactants and an array of AiBj complexes that can be formulated in 

stoichiometric terms as (Calvert et al., 1979)

AiBj

i = 1: A, AB, AB2, ..., ABP

i = 2 A2B, A2B2, A2B3, ..., A2B2p-1

i = 3 A3B2, A3B3, A3B4, ..., A3B3p-2

i = 4 A4B3, A4B4, A4B5, ..., A4B4p-3

. . . . . .

. . . . . .

The simplest approach to quantifying concentrations for these complexes is to obtain 

expressions for those in the first column of the array, AiBi–1, and then to consider the 

completion of each line of the array. Here we envisage formation of those AiBi–1 complexes 

via the addition of AB to the previous member, noting that for i = 1 this corresponds to 

complex formation between A and AB.

For the interaction of bivalent ligand with p-valent acceptor the relationship between 

stoichiometric (Ki) and intrinsic (k) binding constants [eqn (9) for the univalent case] 

becomes

(16)

Lollar and Winzor Page 6

J Mol Recognit. Author manuscript; available in PMC 2015 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to incorporate the fact that there are two (rather than one) ways of ligand attachment to each 

of the (p – i + 1)/i possible arrangements of unoccupied acceptor sites. The concentration of 

the building block AB is thus given by

(17)

An expression for the concentration of A2B can be generated from those of A and AB by 

regarding its formation as the first-step interaction of the univalent AB species with the p 

sites on A. In those terms it follows from eqn (9) that

(18)

where, as a thermodynamic necessity, the halving of the AB concentration reflects the 

formation of A2B from the interaction of A with either of the two forms of AB, which are 

present in equal proportions. In similar vein, the complex A3B2 may be considered to result 

from the interaction of univalent AB with A2B, which has (2p – 2i + 2) available sites. 

Indeed, on the grounds that the concentrations of all AiBi–1 species can likewise be 

determined because all AiBi–1 species (including A) possess (pi – 2i + 2) sites for interaction 

with AB, the general form of eqn (18) is

(19)

where the product of statistical factors, π(pi – 2i + 2), covers the range 1 to i.

Because each AiBi–1 complex also possesses (pi – 2i + 2) equivalent and independent sites 

available for the binding of (j – i + 1) molecules of bivalent B to form the AiBj complexes in 

each line of the array, the Klotz (1946) approach can be adopted by employing eqn (16) to 

obtain their concentrations as (Calvert et al., 1979)

(20)

where  is the combination of (pi –2i + 2) sites taken (j – i + 1) at a time.

Traditional binding equation for a bivalent ligand

Consider initially a system in which the acceptor is also bivalent (p = 2), this being the 

simplest situation inasmuch as the consequent bivalence of all AiBi–1 species ensures that 

complex formation is restricted to linear polymers of alternating A and B molecules: no 

branched polymers can form. An expression for total acceptor concentration is first derived 

in terms of the dimensionless parameter α = 2kCB used in the earlier binding expressions, 

eqns (15a) and (15b). On the grounds that

(21)
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we clearly need to sum the concentrations of the three species, AiBi–1, AiBi and AiBi+1, for 

each value of i. For i = 1 and p = 2 these species are A, AB and AB2, where CAB = 2CAα [see 

eqn (17)] and CAB2 = CAα
2 [from eqn (20)]: the sum of these three concentrations may thus 

be written as CA(1 + α)2. In similar vein,  [eqn (18)], whereas 

 and  [from eqn (20)]: their sum can be written as 

. Continuation of this process leads to the conclusion that

(22)

To obtain the corresponding expression for the concentration of bound ligand, (C̄B – CB), 

terms in order of increasing acceptor content are again collected to give

(23)

where, from the expressions already presented to derive the general form of eqn (22), CAB + 

2CAB2 = 2CAα + 2CAα
2, and . In these 

terms the overall expression for the concentration of bound ligand can be written in the form

(24)

whereupon the binding equation becomes

(25)

An expression analogous in form to that in eqns (15a) and (15b) is then obtained by 

subtracting the quantity 2α/(1 + α) from each side of eqn (25), the result being

(26a)

(26b)

The binding equation derived by conventional means is clearly not as convenient to use as 

that deduced from reacted-site probability considerations because the second term on the 

right-hand side (Ψ) is in the form of a ratio of polynomial series rather than a closed 

solution. However, it is noted that eqns (26a) and (26b) also predict a value of unity (i.e., 

p/2) for r when α = 1. The extent of agreement with eqns (15a) and (15b) for p = 2 can only 

be deduced by numerical calculation, a task undertaken later.
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Although the same approach can obviously be used for systems with a larger acceptor 

valence, the derivation becomes increasingly tedious because of the greater number of 

complexes to which an expression for the concentration has to be assigned. For example, an 

increase in acceptor valence from p = 2 to p = 3 raises the number of complexes requiring 

quantitative description from 11 to 29 in order to maintain the above truncation of 

polynomial series at the A4Bj species. For a trivalent acceptor the counterpart of eqn (21) 

becomes

(27)

where CAB = 3CAα [eqn (7)], CAB2 = 3CAα
2, and CAB3 = CAα

3 [both from eqn (20)]: the 

sum of ABi concentrations is therefore CA(1 + α)3. For the corresponding A2Bi series 

 [eqn (18)], , ,  and 

 [all from eqn (20)]; and these concentrations all need to be doubled in 

the summation to obtain C̄A [see eqn (27)]. The contribution of this series can be arranged to 

the form . Upon extension of this approach the expression for total acceptor 

concentration becomes

(28)

whereas that for bound ligand concentration is

(29)

Subtraction of 3α/(1 + α) from the resulting binding function then gives

(30a)

(30b)

As for the previous system with p = 2, the analogy with eqns (15a) and (15b) prevails in that 

a value of p/2 is again predicted for the binding function when α = 1 [i.e., CB = 1/(2k)].

Although these traditionally derived expressions for the classical binding function (r) may 

be used to simulate numerically its dependence upon the reduced (dimensionless) variable α, 

they are not particularly useful in an experimental context because k (the magnitude of 

which is being sought in the investigation) is encapsulated in the independent variable. 

Indeed, a similar situation applies to the practical utility of eqns (15a) and (15b), the 

corresponding expressions emanating from reacted-site probability theory. As shown 

previously (Hogg and Winzor, 1985; Harris et al., 1995), the solution to this problem entails 

redefinition of the binding function for a multivalent ligand.
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A revised definition of the binding function for a multivalent ligand

The requirement for a revised definition of the binding function for a multivalent ligand 

surfaced during the development of quantitative affinity chromatography as a means of 

characterizing the interaction of tetrameric and hence tetravalent glycolytic enzymes with 

the affinity matrix (Nichol et al., 1981; Hogg and Winzor, 1984); and was realized a year 

later (Hogg and Winzor, 1985) with the report of a generalized Scatchard (1949) analysis 

that takes into account the ligand valence. That expression emanated from the following 

consideration of the problem in terms of reacted-site probability theory.

For a system involving the interaction of a q-valent ligand with a p-valent acceptor eqn (3) 

continues to describe the conservation of acceptor, but the corresponding counterpart for 

ligand [eqn (1)] needs changing to

(31)

Furthermore, the necessity for identical concentrations of reacted acceptor and ligand sites 

becomes

(32)

whereupon elimination of the (1 – PA) term from eqn (4) gives

(33)

as the expression for the intrinsic binding constant. Combination of a rearranged form of eqn 

(31), namely

(34)

with eqn (33) then leads to the conclusion that

(35)

Upon definition of the binding function for a q-valent ligand, rq, as

(36)

eqn (35) becomes

(37)
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which allows evaluation of the intrinsic binding constant from a linear dependence of 

 upon . On substituting a value of unity for q, eqn (37) simplifies to

(38)

which is the linear transform of eqn (8) that was recommended by Scatchard (1949) for the 

characterization of interactions involving univalent ligands. Examples of the use of this 

generalized Scatchard analysis are to be found in studies of the interactions between 

glycolytic enzymes and muscle myofibrils (Harris and Winzor, 1989a,b).

In the normal course of events a linear transform is proposed to simplify the characterization 

of interactions by graphical analysis. However, in this instance the derivation of eqn (37) 

was achieved (Hogg and Winzor, 1985) without recourse to the rectangular hyperbolic 

relationship of which it was the linear transform. Indeed, a decade elapsed before the 

discovery that eqn (37) is a linear transform of the expression (Harris et al., 1995)

(39)

which, as required, simplifies to eqn (8) for a univalent ligand (q = 1). Whereas analysis 

according to eqn (8) only allows assessment of the equivalence and independence of 

acceptor sites in binding studies involving a univalent ligand, eqn (39) provides the general 

rectangular hyperbolic relationship that permits the same criteria to be used for multivalent 

ligands.

An alternative derivation of the generalized Scatchard equation

An alternative approach to derivation of the general counterpart of the Scatchard equation 

[eqn (37)] has also been developed in the vain hope that it might gain greater acceptance 

because of closer adherence to the standard textbook approach. A slightly adapted version of 

that alternative procedure (Winzor, 2002) now follows.

Advantage is taken of the fact that description of the concentration of bound ligand only 

requires knowledge of the total and free ligand concentrations, whereupon the 

concentrations of the array of complexes AiBj can be regarded as merely contributing in 

some unspecified manner to the difference between CB̄ and CB. In writing an expression for 

the total concentration of ligand it suffices to note that there are (q + 1) possible states of a 

ligand molecule to consider: that in which all of its sites are unoccupied, and those in which 

1, 2, ..., q of its sites are occupied by acceptor. The total concentration of ligand can thus be 

written as

(40)

where Ki are stoichiometric binding constants and  is the concentration of free acceptor 

sites on the whole array of complexes as well as those on free A; and where assumed 
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equivalence and independence of ligand sites allows replacement of the stoichiometric 

binding constants by their intrinsic counterpart (k) via the expression (Klotz, 1946)

(41)

which is eqn (9) with the roles of A and B reversed. Here we are essentially considering the 

interaction of univalent A sites (present at free concentration ) with multivalent B. With 

those substitutions eqn (40) can be written as

(42)

which, on application of the binomial theorem, becomes

(43)

or, on rearrangement

(44)

The term in free acceptor-site concentration ( ) is now eliminated by writing the 

counterparts of eqns (40) and (42) for , the total concentration of acceptor sites. 

Specifically,

(45)

where advantage can again be taken of the binomial theorem to write eqn (45) as

(46)

This substitution for  in eqn (44) then gives
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(47)

or, on replacing the first  term by the left-hand side of eqn (44) and noting from eqn (43) 

that ,

(48)

Division of eqn (48) by the total acceptor concentration (C̄A) reveals its identity with eqn 

(35), the corresponding expression obtained from reacted-site probability considerations.

RESULTS AND DISCUSSION

New developments arising from the above theoretical considerations have been (i) the 

generation by the classical stepwise approach of an expression describing the solution 

composition for an equilibrium mixture of multivalent acceptor and bivalent ligand, and (ii) 

the consequent derivation of a binding equation for such systems without recourse to 

reacted-site probability theory. An obvious point to be established is demonstrated 

agreement between predictions based on the current expressions [eqns (26a) and (26b)] and 

their predecessors from reacted-site probability theory [eqns (15a) and (15b)] about the 

forms of binding curves for systems with bivalent ligands.

Comparison of predicted binding curves

The simulation of normalized binding curves (r versus α) from the equations deduced by 

reacted-site probability considerations [eqns (15a) and (15b)] is relatively straightforward 

because of their expression in terms of kC̄A, which is constant for a given binding curve with 

fixed total acceptor concentration. In their classically derived counterparts [eqns (26a) and 

(26b)] the corresponding product is , which depends upon α for the system with fixed 

kC ̄A. Calculation of the magnitude of  for assigned values of  and α entails solution 

of the expression

(49)

which is the specific polynomial in  obtained by multiplying eqn (45), or indeed eqn 

(22) for the particular situation in which q = 2, by the intrinsic binding constant. This 

equation can be solved numerically by iterative adjustment of an input value of  to 

achieve the assigned magnitude of  for any given α.

The results of simulations for the interaction between a bivalent ligand and a bivalent 

acceptor are summarized in Figure 1, where the small symbols (●) depict the rectangular 

hyperbolic relationship stemming from the first term on the right-hand side of eqns (15a) 
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and (26a). The determination of Ω from eqn (15b) for a system with kC̄A = 1 leads to a 

binding curve (◆) that deviates considerably from a rectangular hyperbolic dependence. The 

other set of solid symbols (▲) illustrates the exacerbation of this deviation by a 10-fold 

increase in acceptor concentration ( kC̄A = 10). However, the purpose of presenting these 

findings, which merely confirm those of Calvert et al. (1979), is to demonstrate the essential 

coincidence of binding curves with their counterparts (◇, △) predicted from eqns (26a) and 

(26b), the expressions deduced from classical considerations of ligand binding. In that 

regard particular care needed to be exercised to ensure the adequacy of the truncation of eqn 

(49) as well as the polynomials in eqn (26b). For the calculations with kC̄A = 1 it was 

necessary to extend the polynomials by a further three terms to achieve a final term 

contribution less that 0.1% of kC̄A. At the higher total acceptor concentration (kC̄A = 10) 

those polynomials required extension to the term in (kCAα)12. Fortunately, this undesirable 

and tedious aspect of the classical analysis is countered by the demonstrated equivalence 

between its predictions and those based on eqns (15a) and (15b), their counterparts arising 

from reacted-site probability considerations. The results shown in Figure 1 should thus serve 

to substantiate the validity of binding expressions based on reacted-site probability theory.

A better binding function for multivalent ligands

Despite obvious advantages over its classically derived counterpart, the binding equation 

emanating from reacted-site probability theory [eqns (15a) and (15b)] still has shortcomings 

because of its expression in terms of a binding function (r) that depends upon total acceptor 

concentration. In that regard the division of (C̄B – CB) by C̄A for a univalent ligand did 

generate a binding function that was independent of total acceptor concentration, and hence 

a unique binding equation for the description of a binding curve. We now employ the 

simulated data sets from Figure 1 to demonstrate that this desirable feature is retained by 

invoking the more general definition of the binding function that takes into account the 

ligand valence (Hogg and Winzor, 1985).

Manipulation of the data from Figure 1 into a form compatible with presentation according 

to eqn (37) is accomplished by first noting that multiplication of the binding function r = 

(C̄B – CB)/C̄A that was used in Figure 1 by kC̄A yields a value of k(C̄B – CB) for each value 

of α. On the grounds that kCB = α/2, the corresponding value of kC̄B may be obtained as

(50)

Knowledge of kC̄B then allows calculation of the values for (kC̄B)1/2 and (kC̄B)1/2 = (α/2)1/2 

required for a plot of the results according to the expression

(51)

which is eqn (37) for p = q = 2 divided by the intrinsic binding constant. Such treatment of 

the simulated data for kC̄A = 1 (◆) and kC̄A = 10 (◇) is summarized in Figure 2, which 

establishes their conformity with the predicted linear dependence characterized by values of 
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2 for the slope and ordinate intercept. It is hoped that a program for performing this 

multivalent Scatchard analysis will be available on the web shortly.

Redefinition of the binding function according to eqn (36) has thus had the desired 

consequence of yielding a unique description of results from measurements made with 

different total acceptor concentrations as well as an analysis in terms of a rectangular 

hyperbolic dependence of binding upon free ligand concentration raised to the appropriate 

power [eqn (39)]. That analytical description (Hogg and Winzor, 1985) has particular 

relevance to the characterization of antigen–antibody interactions by radioimmunoassays 

conducted with a fixed antibody concentration and a range of concentrations of labelled 

antigen (Hurrell et al., 1976) because of its seeming superiority over an earlier 

recommended practice involving characterization by simulation of a nonlinear dependence 

of the percentage of antigen bound upon the logarithm of total antigen concentration 

(Calvert et al., 1979).

Apparent antibody univalence in ELISA studies of immunochemical interactions

Despite antibody bivalence, the results from ELISA studies of immunochemical interactions 

involving multivalent antigens (A) often conform with a simple rectangular hyperbolic 

dependence of (C̄B – CB) upon CB (Hogg and Winzor, 1987; Winzor, 2011). This seemingly 

anomalous behavior of a multivalent ligand, first noted in a quantitative affinity 

chromatography study of lactate dehydrogenase on Sepharose-oxamate (Brinkworth et al., 

1975), reflects a vast disparity between acceptor and ligand concentrations (C̄A << C̄B) that 

justifies the simplification (Kalinin et al., 1995)

(52)

on the grounds that δ = (C̄B – CB)/CB << 1. On this basis 

, whereupon eqn (35) for a bivalent ligand and 

can be approximated as

(53)

which is a linear transform of the rectangular hyperbolic dependence

(54)

Although ELISA systems do seemingly exhibit univalent antibody behavior, the equilibrium 

constant deduced from the analysis is not the intrinsic binding constant but rather the 

product 2k for an IgG antibody. The physical explanation of this situation is the essential 

confinement of the antigen–antibody interaction to 1:1 complex formation (–A–B and B–A–) 

because spatial constraints preclude the additional interaction to form the crosslinked species 

(A–B–A) with antibody attached to two antigen sites (Nichol et al., 1974). A notable 

example of such restriction in the types of complexes that can form is provided by the 

FERRIZYME bead assay, for which it has been calculated that the cross-sectional area of 
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the antigen (ferritin, q = 24) is some 10,000-fold smaller than the average surface area 

within which an immobilized anti-ferritin antibody molecule would be located (Hogg and 

Winzor, 1987): complex formation beyond the 1:1 species is thus precluded by the large 

distances between antibody molecules complexed 1:1 with antigen (ferritin).

CONCLUDING REMARKS

The purpose of this investigation has been to engender greater confidence in the validity of 

binding equations derived for multivalent ligands on the basis of reacted-site probability 

theory rather than the classical stepwise equilibrium method. In addition to demonstration of 

the theoretical interconnection between the two approaches for a univalent ligand, the 

classical approach has been employed to derive binding equations for bivalent and trivalent 

ligands. This action has served not only to demonstrate the unwieldy nature of the classical 

binding equation for such systems but also to establish by numerical simulation the 

equivalence of binding curves generated by the two approaches. The advantages of 

switching to a redefined binding function for multivalent ligands have also been illustrated. 

It is hoped that these endeavors may lead to experimental adoption of the binding equations 

derived many years ago for multivalent ligands, and hence to the validity of reported 

quantitative analyses for antigen–antibody interactions.
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Figure 1. 
Comparison of simulated binding curves calculated by means of expressions [eqns (15a,b) 

and (26a,b)] derived from reacted-site probability theory (solid symbols) and classical 

stepwise equilibria considerations (open symbols) respectively for the interaction between a 

bivalent ligand (B) and a bivalent acceptor (A). Diamonds refer to calculations with kC̄A = 1; 

and triangles to calculations with kC̄A = 10: ●, the rectangular hyperbolic dependence 

corresponding to the first term on the right-hand side of eqns (15a) and (26a).
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Figure 2. 
Amalgamation of the two simulated sets of binding data from Figure 1 into a single set by 

the incorporation of a redefined binding function [eqn (36)] and analysis in terms of eqn 

(37), the counterpart of the Scatchard equation for a bivalent ligand.
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